In late 2007, we had solar panels installed on our house. For me, the motivation for solar was to "fuel" the electric car that I had started driving earlier that same year. The 4 kilowatt PV system that we installed provided enough energy to drive an EV to drive about 16,000 miles each year.
In 2015, we added a second PV system, bringing our total up to 12.1 kilowatts. This allows us to "fuel" about 48 thousand solar-powered electric miles each year; far more than we drive. To go along with our second PV system, we added a second electric car to our home fleet.
In addition to fueling our cars, the energy that our PV systems generate is used to power the bulk of our home energy needs, TVs, computers, air conditioning... In the summer, they generate about 130% of our home's energy needs. This means that (via the path of least resistance), we're powering some of our neighbors' energy needs too.
Here is the graph of our solar energy production for 10 years.
The blue part of the graph is our original 4 kW system and the red section is the 8.1 more that was added in 2015.
In this chart, you can see the summer/winter ripple in the production graph as it moves up and to the right. This summer/winter delta grows as you move north on the globe. We are just north of the 45th parallel. Our summer/winter delta is even more exaggerated with our new system since most of the panels are east facing. Our roof-line does not allow for south-facing panels, but we didn't let that stop us from installing them. As you can see, they are still effective.
During our 10 years of production, we've made over 56 MWh, that is more than 56,000 kWh. As I mentioned above, we first installed our PV to fuel our electric car. So how far could this 56 MWh get us? The answer is nearly 200,000 miles for a car like our Nissan Leaf. With this energy, you could drive the NY to LA Cannonball Run more than 70 times. For another comparison, assuming you could drive an EV to the Moon (obviously, you can't, although you could drive one on the Moon since it does not require O2 intake for combustion) this energy could get you ~80% of the way there. We have a goal to generate enough energy to complete this Moonshot drive.
If you'd like to know how big of a solar PV system you need to fuel your own EV driving with solar miles (or smiles), you can check out this article for references and help with the math.
No comments:
Post a Comment